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ABSTRACT 
We examined the efficacy of AI-assisted learning in an 
introductory programming course at the university level by 
using a GPT-4 model to generate personalized hints for compiler 
errors within a platform for automated assessment of 
programming assignments. The control group had no access to 
GPT hints. In the experimental condition GPT hints were 
provided when a compiler error was detected, for the first half of 
the problems in each module. For the latter half of the module, 
hints were disabled. Students highly rated the usefulness of GPT 
hints. In affect surveys, the experimental group reported 
significantly higher levels of focus and lower levels of confrustion 
(confusion and frustration) than the control group. For the six 
most commonly occurring error types we observed mixed results 
in terms of performance when access to GPT hints was enabled 
for the experimental group. However, in the absence of GPT 
hints, the experimental group's performance surpassed the 
control group for five out of the six error types. 
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1 INTRODUCTION 
Hints are a part of learning environments aimed at helping 
learners understand a given task or a set of concepts better [23]. 
There are many examples of systems from the area of intelligent 
tutoring systems [3, 4, 13] and other online educational 
environments [7, 9], including programming [16, 20] that use 
hints to support self-paced learning. The impact of this kind of 
intervention on learning has been studied in previous research 
and mixed results have been observed. Positive effects on 
learning outcomes and engagement have been identified [1, 25] 
but also negative effects such as hint abuse have been reported 
[2]. 

In programming education, in an introductory course for 
computer science students, where compiled languages such as 
Java, C++ or C# are usually used, we would expect hints to 
address several distinct areas: resolving a syntax error (when the 
code doesn’t compile), a runtime error (when the code compiles, 
but it throws an exception during program execution), or an 
error in execution logic (when the program executes, but it does 
not generate expected outcome). Each of these areas separately 
presents different challenges to hint generation.  

In this study we focus on automating generation of hints for 
novices to help them in resolving compiler errors. In general, 
design of compiler messages impedes learning for beginners 
[24], while students’ ability to resolve compiler errors is one of 
the key factors in the early stages of learning to program [5, 6, 
10, 11]. There are several factors that make it challenging to 
automate hint generation for compiler errors to support novices 
at their initial steps in introductory programming courses: 1) the 
number of messages given for different syntax errors is large 
(exceeding 1400 in the case of C#), 2) different compilers (even 
for the same programming language) may report different 
messages for the same code (or code structure), 3) the root for 
each of these errors is in (usually) unique code created by a 
student. 

Large language models (LLMs) have potential to address 
these issues efficiently: they are trained on a large corpus of 
programming data [8], are context aware [21] and preliminary 
results show that hints automatically generated by LLMs may be 
effective for programming education [18]. Therefore, to 
specifically address the issue of hint generation for compiler 
errors and their impact on beginners taking an introductory 
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programming course, we conducted an experimental study using 
a platform for automated assessment of programming 
assignments, and tested the impact of hints generated 
dynamically through an API using the GPT-4 engine. 

2 METHODS 
Data for this study was collected during the first 3 months (2nd 
October – 31st December) of the 4-month-long winter semester 
2023/2024. Participants were computer science students taking a 
mandatory first-semester “Introduction to Programming” course 
at a large university in Poland. The programming language for 
the course was C#. Consent was obtained from students prior to 
joining this study. 

A total of 259 students (29% female) consented to participate 
with N=97 (44% female) being novices in programming, as 
determined by a pre-course questionnaire. This questionnaire 
asked students about their programming knowledge on a scale 
from 1 (no experience) to 5 (extensive experience), asking about 
fundamental concepts such as types, variables, conditional 
statement, recursion, loops, and arrays. The study defined 
novices as those who rated themselves with a 1 or 2 on this 
scale, excluding participants who rated their experience level as 
3 to 5. The accuracy of students' self-assessed programming 
expertise was investigated through a pre-test aimed at objective 
evaluation of their knowledge, administered directly after the 
questionnaire. The difference in pre-test scores between groups 
of novices (Mdn=24%) and more experienced students 
(Mdn=71%) was statistically significant (W=2047, p<0.001) for a 
non-parametric Mann-Whitney U test. 

We utilized the runcodeapp.com platform for automated 
assessment of programming assignments, sharing a total of 146 
programming problems with students [19]. The following topics 
were covered: types and variables (33 problems), conditional 
statement (25), recursion (28), loops (17), and loops with arrays 
(43).  

Tasks were categorized into 14 modules each containing from 
5 to 14 problems. Task difficulty varied, with the easiest tasks 
requiring to multiply two integers, to much more difficult tasks, 
such as extracting and alphabetically sorting words from a given 
text. The platform's assessment process involved compiling and 
testing the submitted code, followed by providing students with 
feedback that included: compiler messages (line, error message 
and id), results for each unit test executed on the compiled code 
(with input values and expected outcome for each unit test), and 
overall score (the percentage of unit tests that ended 
successfully: 0-100%). Usage of the platform was not mandatory 
and performance did not count towards the final grade. 

In this study we specifically focus on beginners (we also refer 
to them as novices). Participants with this level of experience 
were assigned into two groups: a control group (N=48), and an 
experimental group (N=49). No significant difference was 
identified between the median pre-test score of the experimental 
group (Mdn=21%) and the control group (Mdn=24%) for a non-
parametric Mann-Whitney U test (W=1181.5. p=0.971). In the 
experimental condition, GPT hints (GPT-4 model: gpt-4-0613) 

were generated in Polish directly after the code submission, 
when a compiler error was detected, and provided as an 
additional platform feature for the first half of the problems in 
each module. In the case of a submission containing multiple 
compiler errors, a GPT hint was generated for the first error 
identified by the compiler.  

Hints were created via a request to the OpenAI API using the 
approach to prompt generation proposed in [18] and consisted of 
the following parts: 1) general instructions for an assistant (in 
English), 2) assignment text (in Polish, as it is defined on the 
platform), 3) student code, 4) results of the code evaluation (in 
English). The prompt was extended by examples of an ideal 
response containing three elements (in English): an explanation 
of the error (example from one of generated hints: “The compiler 
message ; expected means that a semicolon is missing in the 
line int a = 2*b”), a solution strategy (example: “To fix this 
error, you need to add a semicolon ; at the end of the line int 
a = 2*b”), and an educational element regarding the 
underlying concept (example: “Remember that in C#, every 
statement must be terminated with a semicolon”). The assistant 
was instructed to generate the hint in Polish. The hint was 
generated immediately after the submission (it took 
approximately 15-20 seconds to generate it) and was presented 
as a pop-up. Students could close it and return back to work. 
After closing the pop-up, students could again view this hint by 
clicking a button below the code editor. The hint was generated 
once per submission. No limit was imposed on the number of 
submissions. For the latter half of the module, no hints were 
offered to evaluate the impact of support received from GPT on 
students’ subsequent platform performance. In total, GPT hints 
were generated for 71 out of 143 tasks. 

While solving tasks on the platform students self-reported 
their affective states through a dynamic HTML element 
presented directly after they received submission results with 
the question: "Choose the option that best describes how you 
feel at the moment" with the following response options: Focused, 
Anxious, Confused, Frustrated, Bored, Other (in this order) and 
appropriate emoticons to visually highlight each of the available 
responses. This set of affective states was chosen based on their 
importance for learning [12]. To avoid irritation that could arise 
from being required to fill out the affect survey too frequently, it 
was not presented after every submission, but randomly, with a 
probability of 1/6. In previous research, it has been found that 
unresolved confusion and frustration negatively impact learning 
outcomes [14, 15]. In subsequent research the impact of these 
two affective states has been analyzed under an umbrella of 
confrustion [17, 22] and we use this combined affective state in 
our analysis. 

To evaluate the usefulness of GPT-generated hints, a dynamic 
HTML element was presented to students in the experimental 
condition with a prompt asking to rate the usefulness of received 
hints on a 5-point Likert scale ranging from '1 – Not useful at all' 
to '5 – Extremely useful'. After every fifth GPT hint the student 
received, the student was given this survey. 
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3 RESULTS 
Out of 97 novices, 61 students submitted at least one solution 
on the platform during the study period, generating in total 
14,830 submissions (7,640 – control, 7,190 – experimental: 3,487 
submissions to tasks with GPT hints enabled, and 3,703 for the 
remaining tasks). In the experimental condition 1,222 GPT hints 
were generated for submissions containing a compiler error on 
tasks with GPT hints enabled. Erroneous code submitted during 
the study contained 110 different syntax errors. 

In the following sections, we analyze the reception of the 
GPT hint feature by students, and examine its impact on affect 
immediately following the submission of code containing a 
compiler error. Additionally, we assess performance, looking at 
the fraction of compiler errors in tasks where GPT hints were 
either enabled or disabled for the experimental group. To 
provide insight into the effect of the intervention and the ability 
to resolve errors after disabling GPT hints, our analysis of affect 
state and student performance focuses on submissions that 
contained exactly one compiler error. Our aim is to provide 
insights into both the perceived and actual effectiveness of the 
GPT-hint feature in the context of computer science education. 

3.1 Hint Usefulness 
To evaluate the perceived usefulness of the GPT generated hints, 
a total of 213 collected responses from N=25 students in the 
experimental group were analyzed. The control group did not 
have access to the GPT hints, therefore no responses were 
recorded from this group. Figure 1 displays the histogram of the 
frequency of students according to the median rating they gave 
to received hints, with the x-axis representing the median of the 
hint rating for a user. 
 
 

 

Figure 1: Distribution of students (N=25) according to the 
median rating for received hints 

The majority of students (56%) generally rated the hints as 
very or extremely useful – this shows a generally positive 
reception of the GPT hints feature by students. However, 20% of 
students generally rated hints as not useful at all or slightly 
useful. 

3.2 Affective States 
To understand the impact of the introduced feature on student 
affect we analyzed a total of 1401 survey responses 
(experimental: 754, control: 647) from 54 students (experimental: 
27, control: 27) collected during the period of study with focused 
being the most frequently reported state in both conditions. Out 
of these responses, 210 have been reported while solving tasks 
with GPT hints enabled, directly after receiving a hint for a 
submission with one compiler error. 

To compare differences in the frequencies of the affective 
states reported by each student after receiving a hint for an error, 
non-parametric Mann-Whitney U tests were calculated, due 
violation of normality assumptions. Due to multiple comparisons, 
the Benjamini-Hochberg alpha correction was used. Two 
affective states showed marginally significant differences 
between conditions. For focused, students in the experimental 
group (N=15) reported marginally higher rates (Mdn=0.9) than 
those in the control group (Mdn=0.25, N=13), (W=153, adjusted 
α=0.0125, p=0.0152, for a non-parametric Mann-Whitney U test). 
For confrustion (described in section 2), students in the 
experimental group reported lower rates (Mdn=0) than those in 
the control group (Mdn=0.0167), (W=48, adjusted α=0.025, 
p=0.0157, for a non-parametric Mann-Whitney U test). Boredom 
and anxiety, however, did not show significant differences 
between conditions. For boredom, the experimental group 
reported a median that was not significantly different (Mdn=0) 
from the control group (Mdn=0), (W=96.5, adjusted α=0.05, 
p=0.958, for a non-parametric Mann-Whitney U test). The same 
was true for anxiety (Exp. Mdn=0 vs. Contr. Mdn=0.077), 
(W=81.5, adjusted α=0.075, p=0.444, for a non-parametric Mann-
Whitney U test). 

3.3 Compiler Errors: Student Performance 
To compare the impact of GPT hints on student performance 
between 1) when these hints were available and 2) after they 
were disabled, we examined the first five attempts made for all 
tasks available on the platform by each student (each student-
task pair), focusing on the presence of compiler errors in these 
submissions. 

The study was conducted under conditions differentiated by 
the availability of GPT-generated hints. This is visualized in our 
charts, where the line marked in gray color (Phase 1) represents 
submissions for tasks where GPT hints were enabled for the 
experimental group (first half of the problems listed for each of 
the modules). In contrast, the line in black color (Phase 2) 
provides insight into the submissions for more difficult tasks 
where GPT hints were disabled (second half of the problems 
listed for each of the modules). As a reminder: for both sets of 
tasks the control group did not have access to GPT hints. 

This approach allowed us to explore the impact of AI-
generated hints on the frequency of compiler errors, offering 
insights into the effectiveness of AI tools in enhancing error-
resolving competency. 

The presented charts illustrate the fraction of code 
submissions in which a particular compiler error was detected 
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across successive attempts (lower values mean better 
performance). Each data point represents the total percentage of 
submissions with the identified compilation error, cumulatively 
calculated up to that specific attempt. In these calculations, the 
first five attempts on each task available on the platform were 
included. 

Due to a large number of different errors identified in student 
submissions, we constrain our analysis only to the compiler 
errors most prevalent in our dataset with the following IDs: 
CS1002 (8%), CS0103 (5%), CS0266 (4%), CS1525 (3%), CS0161 (3%), 
CS1026 (2%). 

3.3.1 CS1002 "; expected". This compiler error occurs when a 
semicolon, which is required at the end of a statement, is missing. 
For this error we observed that in scenarios where GPT hints 
were accessible (Phase 1), the performance of the experimental 
group was slightly lower than that of the control group (Figure 
2). However, in the set of more complex tasks where GPT hints 
were withdrawn from the experimental group (Phase 2), the 
performance of the experimental group only saw a minor decline 
and was distinctly better than in the control group. For the 
control group, we observed a significant drop in performance on 
the more complex tasks. 

These results indicate that initial exposure to AI-assisted 
error resolving, even when later removed, may have potential to 
impart lasting benefits in tackling more complex programming 
assignments. 

 

 

Figure 2: Error CS1002 "; expected". Proportion of Errors 
Across First 5 Submission Attempts (cumulative). 

3.3.2 CS0103 "The name '{0}' does not exist in the current 
context". Similar outcomes are seen for the CS0103 compiler 
error, occurring when a variable or method name has not been 
declared or is not accessible in the scope where it is being used.  

In this case, for the set of tasks where GPT hints were 
activated (Phase 1), the experimental group displayed lower 
performance than the control group (Figure 3). 

However, in the case of more advanced tasks (Phase 2), while 
the control group was slightly less successful at fixing this error, 
the performance of the experimental group improved, surpassing 
that of the control group as in CS1002. 

 

 

Figure 3: Error CS0103 "The name '{0}' does not exist in the 
current context". Proportion of Errors Across First 5 
Submission Attempts (cumulative). 

3.3.3 CS1525 "Invalid expression term '{0}'". This error is 
often a result of typos or syntax misunderstandings and typically 
occurs when there's an invalid term in an expression, such as an 
unexpected keyword, missing operator, or incorrect syntax. We 
observed a somewhat different pattern of outcomes in students 
resolving the CS1525 compiler error. 

When students in the experimental condition dealt with this 
error while solving tasks with the availability of GPT hints 
(Phase 1), they outperformed the control group (Figure 4). 

 

 

Figure 4: Error CS1525 "Invalid expression term '{0}'". 
Proportion of Errors Across First 5 Submission Attempts 
(cumulative). 

In this case, as in the previous examples, the experimental 
group performed better than the control group for tasks with 
GPT hints disabled (Phase 2). However, the control group 
showed an improvement in performance across these problems, 
a pattern not seen for the experimental group. 

3.3.4 CS0266 "Cannot implicitly convert type '{0}' to '{1}'. 
This error is encountered when there is an attempt to assign a 



Navigating Compiler Errors with AI Assistance ITiCSE 2024, July 8-10, 2024, Milan, Italy 
 

 

value of one data type to a variable of another data type, and the 
compiler cannot perform an implicit conversion between them. 

This error, unlike the much simpler syntax errors examined 
earlier, requires a deeper conceptual understanding of data types 
and their conversions in programming. For fixing the CS0266 
compiler error, we observed varied results across different 
conditions. 

When tasks were completed with the aid of GPT-generated 
hints (Phase 1), the experimental group, which had access to 
these hints, again performed slightly worse than the control 
group that did not receive support (Figure 5). 

For the more difficult tasks where GPT hints were phased out 
(Phase 2), both groups demonstrated lower performance overall. 
In their first attempt at tasks with GPT hints disabled, the two 
groups showed similar levels of performance, indicating a 
baseline competency in addressing this complex error. In 
subsequent attempts, however, the control group displayed 
improvement in performance, while the experimental group 
unexpectedly showed a decrease. 

 

 

Figure 5: Error CS0266 "Cannot implicitly convert type '{0}' 
to '{1}'. An explicit conversion exists (are you missing a 
cast?)". Proportion of Errors Across First 5 Submission 
Attempts (cumulative). 

3.3.5 CS0161 "'{0}': not all code paths return a value". This 
error is another example of a simpler syntax error occurring in a 
method that is expected to return a value, but where there is at 
least one code path that does not end with a return statement. 
Within the tasks where GPT hints were enabled for the 
experimental group (Phase 1), we observed the following 
pattern: Initially, in the first attempt, the experimental group 
slightly outperformed the control group. However, in subsequent 
attempts, the performance of the experimental group declined, 
while the control group maintained a consistent level of 
performance (Figure 6). When the GPT hints were disabled 
(Phase 2), we observed a similar pattern as for the first three 
errors introduced earlier: the performance of the experimental 
group showed a distinct improvement. The performance of the 
control group remained largely unchanged. 

 

Figure 6: Error CS0161 "'{0}': not all code paths return a 
value". Proportion of Errors Across First 5 Submission 
Attempts (cumulative). 

3.3.6 CS1026 ") expected". We also examined student 
responses to the CS1026 compiler error indicating that a closing 
parenthesis is missing – another example of a simpler syntax 
error. 

For tasks where GPT-generated hints were available to the 
experimental group (Phase 1), we observed that the control 
group, which did not have access to these hints, exhibited a 
lower level of performance (Figure 7). 

 

 

Figure 7: Error CS1026 ") expected". Proportion of Errors 
Across First 5 Submission Attempts (cumulative).  

In a second set of tasks where GPT feedback was no longer 
provided for the experimental group (Phase 2), the experimental 
group again outperformed the control group. The performance 
level of the experimental group remained consistent with their 
earlier attempts when GPT hints were available. In contrast, the 
control group's performance deteriorated significantly. 

3.4 Summary 
In conclusion, this section analyzed six distinct errors and 

found that the experimental group exhibited enhanced 
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performance in five instances when GPT-provided hints were 
withheld. This improvement predominantly occurred in errors 
related to syntax. However, addressing the CS0266 error, which 
necessitates a more profound comprehension of data types, did 
not follow this trend. It appears that the provided GPT assistance, 
may not have been helpful to students in learning to resolve 
more complex errors. 

4 DISCUSSION 
Given the complexity of programming, including the large 
number of potential compiler errors, it is a challenge to provide 
concise and effective assistance to novices in the form of 
targeted hints for error resolution. Large language models have 
the potential to address this issue. In this study we presented the 
findings of an experiment that involved the use of GPT-4 hints 
generated in Polish aimed to assist novices within a platform for 
automated assessment of programming assignments and 
analyzed the hints’ effectiveness at helping students resolve 
compiler errors. 

According to a survey conducted to assess the perceived 
usefulness of GPT-generated hints, a significant majority of 
students positively rated the availability and utility of these hints, 
most generally considering them to be either very or extremely 
useful (56%). However, it is important to note that approximately 
20% of the students generally did not find the hints beneficial. 
This suggests that while GPT hints are generally perceived as 
useful, there is a need for further improvement of their relevance 
and accuracy. Addressing this gap could involve strategies such 
as refined prompt engineering or fine-tuning of the AI model to 
better address diverse needs of students. This finding aligns with 
the outcomes reported in [18], underscoring the notion that 
while AI tools like GPT may positively stimulate the learning 
process, their efficacy is mixed and could be possibly augmented 
through more targeted improvements tailored to user feedback 
and specific learning contexts. 

We also observed that the availability of GPT hints 
significantly impacted affective states of students directly after 
obtaining an error. We observed increased level of focus and also 
a significant decrease in confrustion (confusion and frustration) 
in the experimental group after receiving results for a 
submission with a compiler error. This outcome suggests that 
availability of the assistance provided by GPT hints positively 
influences the emotional state of learners. However, the 
relatively small sample of these responses suggests that further 
replication and investigation is warranted. 

The results of the student performance analysis for different 
compiler errors were mixed, indicating that the availability of 
GPT hints did not consistently lead to improved performance 
across tasks with GPT hints enabled. Contrary to our 
expectations, we observed lower performance in the 
experimental condition for several error types. This outcome 
suggests that while GPT hints can be beneficial, their 
effectiveness in enhancing understanding and error resolution 
skills may be limited to specific types of compiler errors. 

However, for more challenging tasks in the second half of 
each module where GPT hints were disabled, the performance of 
the experimental group was consistently higher for 5 out of 6 
analyzed errors, with the exception of the "Error CS0266 'Cannot 
implicitly convert type '{0}' to '{1}'. An explicit conversion exists 
(are you missing a cast?)'." This error presents a different type of  
challenge than the remaining 5, simpler syntax-based errors. 
Resolving the CS0266 error, which involves the inability to 
implicitly convert between data types, requires a deeper 
conceptual understanding of data types and their conversions in 
programming. Our findings suggest that while our current GPT 
hints may help students learn to identify and rectify 
straightforward syntax or scope errors, their efficacy in fostering 
a comprehensive grasp of more complex concepts, such as those 
needed to resolve the CS0266 error, appears limited. Further 
work will be needed to enhance the quality and depth of the 
hints, as well as possibly adopting more integrated approaches 
that merge the benefits of AI tools with other teaching methods 
to cultivate a thorough understanding of more advanced 
programming concepts. 

Our findings suggest that although the immediate and clear 
benefits of GPT-assisted learning are not universal, exposure to 
such hints can equip students with lasting skills or strategies 
that are beneficial when AI support is no longer available. The  
experimental group in our study showed improved error 
troubleshooting capabilities for syntax-based errors while 
solving more complex problems, unlike the control group. 

There were several limitations of this study. First, the study's 
duration was brief, encompassing only three months of a four-
month semester. Future research should consider capturing the 
longer-term effects of GPT-generated hints on student 
performance. The limited number of participants in this study, 
and its focus on a single university and course, also represents a 
limitation to the robustness and external validity of the findings. 
Future studies should therefore aim to involve a larger and more 
diverse number of participants. Finally, the focus of this study 
was exclusively on the C# programming language, while 
introductory computer science education frequently includes 
other languages such as Java, Python and C++. To provide a 
more comprehensive understanding of the general effectiveness 
of GPT-generated hints for programming education, future 
research should expand to include these additional programming 
languages and generating hints in other languages than Polish. 

Overall, our study highlights the complexity and challenges 
related to the implementation of generative AI tools in computer 
science education, suggesting that their benefits might extend 
beyond direct assistance to fostering deeper learning and error 
resolution skills. 
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