
Navigating Compiler Errors with AI Assistance - A Study of
GPT Hints in an Introductory Programming Course

Maciej Pankiewicz
Warsaw University of Life Sciences

Warsaw, Poland
maciej_pankiewicz@sggw.edu.pl

Ryan S. Baker
University of Pennsylvania

 Philadelphia, USA
ryanshaunbaker@gmail.com

ABSTRACT
We examined the efficacy of AI-assisted learning in an
introductory programming course at the university level by
using a GPT-4 model to generate personalized hints for compiler
errors within a platform for automated assessment of
programming assignments. The control group had no access to
GPT hints. In the experimental condition GPT hints were
provided when a compiler error was detected, for the first half of
the problems in each module. For the latter half of the module,
hints were disabled. Students highly rated the usefulness of GPT
hints. In affect surveys, the experimental group reported
significantly higher levels of focus and lower levels of confrustion
(confusion and frustration) than the control group. For the six
most commonly occurring error types we observed mixed results
in terms of performance when access to GPT hints was enabled
for the experimental group. However, in the absence of GPT
hints, the experimental group's performance surpassed the
control group for five out of the six error types.

CCS CONCEPTS
• Applied computing • Education • Interactive learning

KEYWORDS
Automated assessment, programming education, large language
models, LLM, GPT, compiler errors, personalized hints

ACM Reference format:

Maciej Pankiewicz and Ryan S. Baker. 2024. Navigating Compiler Errors
with AI Assistance – A Study of GPT Hints in an Introductory
Programming Course. In Proceedings of the 29th annual ACM conference
on Innovation and Technology in Computer Science Education (ITiCSE’24),
July 8-10, 2024, Milan, Italy. ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
Hints are a part of learning environments aimed at helping
learners understand a given task or a set of concepts better [23].
There are many examples of systems from the area of intelligent
tutoring systems [3, 4, 13] and other online educational
environments [7, 9], including programming [16, 20] that use
hints to support self-paced learning. The impact of this kind of
intervention on learning has been studied in previous research
and mixed results have been observed. Positive effects on
learning outcomes and engagement have been identified [1, 25]
but also negative effects such as hint abuse have been reported
[2].

In programming education, in an introductory course for
computer science students, where compiled languages such as
Java, C++ or C# are usually used, we would expect hints to
address several distinct areas: resolving a syntax error (when the
code doesn’t compile), a runtime error (when the code compiles,
but it throws an exception during program execution), or an
error in execution logic (when the program executes, but it does
not generate expected outcome). Each of these areas separately
presents different challenges to hint generation.

In this study we focus on automating generation of hints for
novices to help them in resolving compiler errors. In general,
design of compiler messages impedes learning for beginners
[24], while students’ ability to resolve compiler errors is one of
the key factors in the early stages of learning to program [5, 6,
10, 11]. There are several factors that make it challenging to
automate hint generation for compiler errors to support novices
at their initial steps in introductory programming courses: 1) the
number of messages given for different syntax errors is large
(exceeding 1400 in the case of C#), 2) different compilers (even
for the same programming language) may report different
messages for the same code (or code structure), 3) the root for
each of these errors is in (usually) unique code created by a
student.

Large language models (LLMs) have potential to address
these issues efficiently: they are trained on a large corpus of
programming data [8], are context aware [21] and preliminary
results show that hints automatically generated by LLMs may be
effective for programming education [18]. Therefore, to
specifically address the issue of hint generation for compiler
errors and their impact on beginners taking an introductory

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0600-4/24/07
https://doi.org/10.1145/3649217.3653608

ITiCSE 2024, July 8–10, 2024, Milan, Italy Maciej Pankiewicz & Ryan S. Baker

programming course, we conducted an experimental study using
a platform for automated assessment of programming
assignments, and tested the impact of hints generated
dynamically through an API using the GPT-4 engine.

2 METHODS
Data for this study was collected during the first 3 months (2nd
October – 31st December) of the 4-month-long winter semester
2023/2024. Participants were computer science students taking a
mandatory first-semester “Introduction to Programming” course
at a large university in Poland. The programming language for
the course was C#. Consent was obtained from students prior to
joining this study.

A total of 259 students (29% female) consented to participate
with N=97 (44% female) being novices in programming, as
determined by a pre-course questionnaire. This questionnaire
asked students about their programming knowledge on a scale
from 1 (no experience) to 5 (extensive experience), asking about
fundamental concepts such as types, variables, conditional
statement, recursion, loops, and arrays. The study defined
novices as those who rated themselves with a 1 or 2 on this
scale, excluding participants who rated their experience level as
3 to 5. The accuracy of students' self-assessed programming
expertise was investigated through a pre-test aimed at objective
evaluation of their knowledge, administered directly after the
questionnaire. The difference in pre-test scores between groups
of novices (Mdn=24%) and more experienced students
(Mdn=71%) was statistically significant (W=2047, p<0.001) for a
non-parametric Mann-Whitney U test.

We utilized the runcodeapp.com platform for automated
assessment of programming assignments, sharing a total of 146
programming problems with students [19]. The following topics
were covered: types and variables (33 problems), conditional
statement (25), recursion (28), loops (17), and loops with arrays
(43).

Tasks were categorized into 14 modules each containing from
5 to 14 problems. Task difficulty varied, with the easiest tasks
requiring to multiply two integers, to much more difficult tasks,
such as extracting and alphabetically sorting words from a given
text. The platform's assessment process involved compiling and
testing the submitted code, followed by providing students with
feedback that included: compiler messages (line, error message
and id), results for each unit test executed on the compiled code
(with input values and expected outcome for each unit test), and
overall score (the percentage of unit tests that ended
successfully: 0-100%). Usage of the platform was not mandatory
and performance did not count towards the final grade.

In this study we specifically focus on beginners (we also refer
to them as novices). Participants with this level of experience
were assigned into two groups: a control group (N=48), and an
experimental group (N=49). No significant difference was
identified between the median pre-test score of the experimental
group (Mdn=21%) and the control group (Mdn=24%) for a non-
parametric Mann-Whitney U test (W=1181.5. p=0.971). In the
experimental condition, GPT hints (GPT-4 model: gpt-4-0613)

were generated in Polish directly after the code submission,
when a compiler error was detected, and provided as an
additional platform feature for the first half of the problems in
each module. In the case of a submission containing multiple
compiler errors, a GPT hint was generated for the first error
identified by the compiler.

Hints were created via a request to the OpenAI API using the
approach to prompt generation proposed in [18] and consisted of
the following parts: 1) general instructions for an assistant (in
English), 2) assignment text (in Polish, as it is defined on the
platform), 3) student code, 4) results of the code evaluation (in
English). The prompt was extended by examples of an ideal
response containing three elements (in English): an explanation
of the error (example from one of generated hints: “The compiler
message ; expected means that a semicolon is missing in the
line int a = 2*b”), a solution strategy (example: “To fix this
error, you need to add a semicolon ; at the end of the line int
a = 2*b”), and an educational element regarding the
underlying concept (example: “Remember that in C#, every
statement must be terminated with a semicolon”). The assistant
was instructed to generate the hint in Polish. The hint was
generated immediately after the submission (it took
approximately 15-20 seconds to generate it) and was presented
as a pop-up. Students could close it and return back to work.
After closing the pop-up, students could again view this hint by
clicking a button below the code editor. The hint was generated
once per submission. No limit was imposed on the number of
submissions. For the latter half of the module, no hints were
offered to evaluate the impact of support received from GPT on
students’ subsequent platform performance. In total, GPT hints
were generated for 71 out of 143 tasks.

While solving tasks on the platform students self-reported
their affective states through a dynamic HTML element
presented directly after they received submission results with
the question: "Choose the option that best describes how you
feel at the moment" with the following response options: Focused,
Anxious, Confused, Frustrated, Bored, Other (in this order) and
appropriate emoticons to visually highlight each of the available
responses. This set of affective states was chosen based on their
importance for learning [12]. To avoid irritation that could arise
from being required to fill out the affect survey too frequently, it
was not presented after every submission, but randomly, with a
probability of 1/6. In previous research, it has been found that
unresolved confusion and frustration negatively impact learning
outcomes [14, 15]. In subsequent research the impact of these
two affective states has been analyzed under an umbrella of
confrustion [17, 22] and we use this combined affective state in
our analysis.

To evaluate the usefulness of GPT-generated hints, a dynamic
HTML element was presented to students in the experimental
condition with a prompt asking to rate the usefulness of received
hints on a 5-point Likert scale ranging from '1 – Not useful at all'
to '5 – Extremely useful'. After every fifth GPT hint the student
received, the student was given this survey.

Navigating Compiler Errors with AI Assistance ITiCSE 2024, July 8-10, 2024, Milan, Italy

3 RESULTS
Out of 97 novices, 61 students submitted at least one solution
on the platform during the study period, generating in total
14,830 submissions (7,640 – control, 7,190 – experimental: 3,487
submissions to tasks with GPT hints enabled, and 3,703 for the
remaining tasks). In the experimental condition 1,222 GPT hints
were generated for submissions containing a compiler error on
tasks with GPT hints enabled. Erroneous code submitted during
the study contained 110 different syntax errors.

In the following sections, we analyze the reception of the
GPT hint feature by students, and examine its impact on affect
immediately following the submission of code containing a
compiler error. Additionally, we assess performance, looking at
the fraction of compiler errors in tasks where GPT hints were
either enabled or disabled for the experimental group. To
provide insight into the effect of the intervention and the ability
to resolve errors after disabling GPT hints, our analysis of affect
state and student performance focuses on submissions that
contained exactly one compiler error. Our aim is to provide
insights into both the perceived and actual effectiveness of the
GPT-hint feature in the context of computer science education.

3.1 Hint Usefulness
To evaluate the perceived usefulness of the GPT generated hints,
a total of 213 collected responses from N=25 students in the
experimental group were analyzed. The control group did not
have access to the GPT hints, therefore no responses were
recorded from this group. Figure 1 displays the histogram of the
frequency of students according to the median rating they gave
to received hints, with the x-axis representing the median of the
hint rating for a user.

Figure 1: Distribution of students (N=25) according to the
median rating for received hints

The majority of students (56%) generally rated the hints as
very or extremely useful – this shows a generally positive
reception of the GPT hints feature by students. However, 20% of
students generally rated hints as not useful at all or slightly
useful.

3.2 Affective States
To understand the impact of the introduced feature on student
affect we analyzed a total of 1401 survey responses
(experimental: 754, control: 647) from 54 students (experimental:
27, control: 27) collected during the period of study with focused
being the most frequently reported state in both conditions. Out
of these responses, 210 have been reported while solving tasks
with GPT hints enabled, directly after receiving a hint for a
submission with one compiler error.

To compare differences in the frequencies of the affective
states reported by each student after receiving a hint for an error,
non-parametric Mann-Whitney U tests were calculated, due
violation of normality assumptions. Due to multiple comparisons,
the Benjamini-Hochberg alpha correction was used. Two
affective states showed marginally significant differences
between conditions. For focused, students in the experimental
group (N=15) reported marginally higher rates (Mdn=0.9) than
those in the control group (Mdn=0.25, N=13), (W=153, adjusted
α=0.0125, p=0.0152, for a non-parametric Mann-Whitney U test).
For confrustion (described in section 2), students in the
experimental group reported lower rates (Mdn=0) than those in
the control group (Mdn=0.0167), (W=48, adjusted α=0.025,
p=0.0157, for a non-parametric Mann-Whitney U test). Boredom
and anxiety, however, did not show significant differences
between conditions. For boredom, the experimental group
reported a median that was not significantly different (Mdn=0)
from the control group (Mdn=0), (W=96.5, adjusted α=0.05,
p=0.958, for a non-parametric Mann-Whitney U test). The same
was true for anxiety (Exp. Mdn=0 vs. Contr. Mdn=0.077),
(W=81.5, adjusted α=0.075, p=0.444, for a non-parametric Mann-
Whitney U test).

3.3 Compiler Errors: Student Performance
To compare the impact of GPT hints on student performance
between 1) when these hints were available and 2) after they
were disabled, we examined the first five attempts made for all
tasks available on the platform by each student (each student-
task pair), focusing on the presence of compiler errors in these
submissions.

The study was conducted under conditions differentiated by
the availability of GPT-generated hints. This is visualized in our
charts, where the line marked in gray color (Phase 1) represents
submissions for tasks where GPT hints were enabled for the
experimental group (first half of the problems listed for each of
the modules). In contrast, the line in black color (Phase 2)
provides insight into the submissions for more difficult tasks
where GPT hints were disabled (second half of the problems
listed for each of the modules). As a reminder: for both sets of
tasks the control group did not have access to GPT hints.

This approach allowed us to explore the impact of AI-
generated hints on the frequency of compiler errors, offering
insights into the effectiveness of AI tools in enhancing error-
resolving competency.

The presented charts illustrate the fraction of code
submissions in which a particular compiler error was detected

ITiCSE 2024, July 8–10, 2024, Milan, Italy Maciej Pankiewicz & Ryan S. Baker

across successive attempts (lower values mean better
performance). Each data point represents the total percentage of
submissions with the identified compilation error, cumulatively
calculated up to that specific attempt. In these calculations, the
first five attempts on each task available on the platform were
included.

Due to a large number of different errors identified in student
submissions, we constrain our analysis only to the compiler
errors most prevalent in our dataset with the following IDs:
CS1002 (8%), CS0103 (5%), CS0266 (4%), CS1525 (3%), CS0161 (3%),
CS1026 (2%).

3.3.1 CS1002 "; expected". This compiler error occurs when a
semicolon, which is required at the end of a statement, is missing.
For this error we observed that in scenarios where GPT hints
were accessible (Phase 1), the performance of the experimental
group was slightly lower than that of the control group (Figure
2). However, in the set of more complex tasks where GPT hints
were withdrawn from the experimental group (Phase 2), the
performance of the experimental group only saw a minor decline
and was distinctly better than in the control group. For the
control group, we observed a significant drop in performance on
the more complex tasks.

These results indicate that initial exposure to AI-assisted
error resolving, even when later removed, may have potential to
impart lasting benefits in tackling more complex programming
assignments.

Figure 2: Error CS1002 "; expected". Proportion of Errors
Across First 5 Submission Attempts (cumulative).

3.3.2 CS0103 "The name '{0}' does not exist in the current
context". Similar outcomes are seen for the CS0103 compiler
error, occurring when a variable or method name has not been
declared or is not accessible in the scope where it is being used.

In this case, for the set of tasks where GPT hints were
activated (Phase 1), the experimental group displayed lower
performance than the control group (Figure 3).

However, in the case of more advanced tasks (Phase 2), while
the control group was slightly less successful at fixing this error,
the performance of the experimental group improved, surpassing
that of the control group as in CS1002.

Figure 3: Error CS0103 "The name '{0}' does not exist in the
current context". Proportion of Errors Across First 5
Submission Attempts (cumulative).

3.3.3 CS1525 "Invalid expression term '{0}'". This error is
often a result of typos or syntax misunderstandings and typically
occurs when there's an invalid term in an expression, such as an
unexpected keyword, missing operator, or incorrect syntax. We
observed a somewhat different pattern of outcomes in students
resolving the CS1525 compiler error.

When students in the experimental condition dealt with this
error while solving tasks with the availability of GPT hints
(Phase 1), they outperformed the control group (Figure 4).

Figure 4: Error CS1525 "Invalid expression term '{0}'".
Proportion of Errors Across First 5 Submission Attempts
(cumulative).

In this case, as in the previous examples, the experimental
group performed better than the control group for tasks with
GPT hints disabled (Phase 2). However, the control group
showed an improvement in performance across these problems,
a pattern not seen for the experimental group.

3.3.4 CS0266 "Cannot implicitly convert type '{0}' to '{1}'.
This error is encountered when there is an attempt to assign a

Navigating Compiler Errors with AI Assistance ITiCSE 2024, July 8-10, 2024, Milan, Italy

value of one data type to a variable of another data type, and the
compiler cannot perform an implicit conversion between them.

This error, unlike the much simpler syntax errors examined
earlier, requires a deeper conceptual understanding of data types
and their conversions in programming. For fixing the CS0266
compiler error, we observed varied results across different
conditions.

When tasks were completed with the aid of GPT-generated
hints (Phase 1), the experimental group, which had access to
these hints, again performed slightly worse than the control
group that did not receive support (Figure 5).

For the more difficult tasks where GPT hints were phased out
(Phase 2), both groups demonstrated lower performance overall.
In their first attempt at tasks with GPT hints disabled, the two
groups showed similar levels of performance, indicating a
baseline competency in addressing this complex error. In
subsequent attempts, however, the control group displayed
improvement in performance, while the experimental group
unexpectedly showed a decrease.

Figure 5: Error CS0266 "Cannot implicitly convert type '{0}'
to '{1}'. An explicit conversion exists (are you missing a
cast?)". Proportion of Errors Across First 5 Submission
Attempts (cumulative).

3.3.5 CS0161 "'{0}': not all code paths return a value". This
error is another example of a simpler syntax error occurring in a
method that is expected to return a value, but where there is at
least one code path that does not end with a return statement.
Within the tasks where GPT hints were enabled for the
experimental group (Phase 1), we observed the following
pattern: Initially, in the first attempt, the experimental group
slightly outperformed the control group. However, in subsequent
attempts, the performance of the experimental group declined,
while the control group maintained a consistent level of
performance (Figure 6). When the GPT hints were disabled
(Phase 2), we observed a similar pattern as for the first three
errors introduced earlier: the performance of the experimental
group showed a distinct improvement. The performance of the
control group remained largely unchanged.

Figure 6: Error CS0161 "'{0}': not all code paths return a
value". Proportion of Errors Across First 5 Submission
Attempts (cumulative).

3.3.6 CS1026 ") expected". We also examined student
responses to the CS1026 compiler error indicating that a closing
parenthesis is missing – another example of a simpler syntax
error.

For tasks where GPT-generated hints were available to the
experimental group (Phase 1), we observed that the control
group, which did not have access to these hints, exhibited a
lower level of performance (Figure 7).

Figure 7: Error CS1026 ") expected". Proportion of Errors
Across First 5 Submission Attempts (cumulative).

In a second set of tasks where GPT feedback was no longer
provided for the experimental group (Phase 2), the experimental
group again outperformed the control group. The performance
level of the experimental group remained consistent with their
earlier attempts when GPT hints were available. In contrast, the
control group's performance deteriorated significantly.

3.4 Summary
In conclusion, this section analyzed six distinct errors and

found that the experimental group exhibited enhanced

ITiCSE 2024, July 8–10, 2024, Milan, Italy Maciej Pankiewicz & Ryan S. Baker

performance in five instances when GPT-provided hints were
withheld. This improvement predominantly occurred in errors
related to syntax. However, addressing the CS0266 error, which
necessitates a more profound comprehension of data types, did
not follow this trend. It appears that the provided GPT assistance,
may not have been helpful to students in learning to resolve
more complex errors.

4 DISCUSSION
Given the complexity of programming, including the large
number of potential compiler errors, it is a challenge to provide
concise and effective assistance to novices in the form of
targeted hints for error resolution. Large language models have
the potential to address this issue. In this study we presented the
findings of an experiment that involved the use of GPT-4 hints
generated in Polish aimed to assist novices within a platform for
automated assessment of programming assignments and
analyzed the hints’ effectiveness at helping students resolve
compiler errors.

According to a survey conducted to assess the perceived
usefulness of GPT-generated hints, a significant majority of
students positively rated the availability and utility of these hints,
most generally considering them to be either very or extremely
useful (56%). However, it is important to note that approximately
20% of the students generally did not find the hints beneficial.
This suggests that while GPT hints are generally perceived as
useful, there is a need for further improvement of their relevance
and accuracy. Addressing this gap could involve strategies such
as refined prompt engineering or fine-tuning of the AI model to
better address diverse needs of students. This finding aligns with
the outcomes reported in [18], underscoring the notion that
while AI tools like GPT may positively stimulate the learning
process, their efficacy is mixed and could be possibly augmented
through more targeted improvements tailored to user feedback
and specific learning contexts.

We also observed that the availability of GPT hints
significantly impacted affective states of students directly after
obtaining an error. We observed increased level of focus and also
a significant decrease in confrustion (confusion and frustration)
in the experimental group after receiving results for a
submission with a compiler error. This outcome suggests that
availability of the assistance provided by GPT hints positively
influences the emotional state of learners. However, the
relatively small sample of these responses suggests that further
replication and investigation is warranted.

The results of the student performance analysis for different
compiler errors were mixed, indicating that the availability of
GPT hints did not consistently lead to improved performance
across tasks with GPT hints enabled. Contrary to our
expectations, we observed lower performance in the
experimental condition for several error types. This outcome
suggests that while GPT hints can be beneficial, their
effectiveness in enhancing understanding and error resolution
skills may be limited to specific types of compiler errors.

However, for more challenging tasks in the second half of
each module where GPT hints were disabled, the performance of
the experimental group was consistently higher for 5 out of 6
analyzed errors, with the exception of the "Error CS0266 'Cannot
implicitly convert type '{0}' to '{1}'. An explicit conversion exists
(are you missing a cast?)'." This error presents a different type of
challenge than the remaining 5, simpler syntax-based errors.
Resolving the CS0266 error, which involves the inability to
implicitly convert between data types, requires a deeper
conceptual understanding of data types and their conversions in
programming. Our findings suggest that while our current GPT
hints may help students learn to identify and rectify
straightforward syntax or scope errors, their efficacy in fostering
a comprehensive grasp of more complex concepts, such as those
needed to resolve the CS0266 error, appears limited. Further
work will be needed to enhance the quality and depth of the
hints, as well as possibly adopting more integrated approaches
that merge the benefits of AI tools with other teaching methods
to cultivate a thorough understanding of more advanced
programming concepts.

Our findings suggest that although the immediate and clear
benefits of GPT-assisted learning are not universal, exposure to
such hints can equip students with lasting skills or strategies
that are beneficial when AI support is no longer available. The
experimental group in our study showed improved error
troubleshooting capabilities for syntax-based errors while
solving more complex problems, unlike the control group.

There were several limitations of this study. First, the study's
duration was brief, encompassing only three months of a four-
month semester. Future research should consider capturing the
longer-term effects of GPT-generated hints on student
performance. The limited number of participants in this study,
and its focus on a single university and course, also represents a
limitation to the robustness and external validity of the findings.
Future studies should therefore aim to involve a larger and more
diverse number of participants. Finally, the focus of this study
was exclusively on the C# programming language, while
introductory computer science education frequently includes
other languages such as Java, Python and C++. To provide a
more comprehensive understanding of the general effectiveness
of GPT-generated hints for programming education, future
research should expand to include these additional programming
languages and generating hints in other languages than Polish.

Overall, our study highlights the complexity and challenges
related to the implementation of generative AI tools in computer
science education, suggesting that their benefits might extend
beyond direct assistance to fostering deeper learning and error
resolution skills.

ACKNOWLEDGMENTS
This paper was written with the assistance of ChatGPT, which
was used to improve the writing clarity and grammar of first
drafts written by humans. All outputs were reviewed and
modified by two human authors prior to submission.

Navigating Compiler Errors with AI Assistance ITiCSE 2024, July 8-10, 2024, Milan, Italy

REFERENCES
[1] Aleven, V. et al. 2016. Example-tracing tutors:

Intelligent tutor development for non-programmers.
International Journal of Artificial Intelligence in
Education. 26, (2016), 224–269.

[2] Aleven, V. et al. 2016. Help helps, but only so much:
Research on help seeking with intelligent tutoring
systems. International Journal of Artificial Intelligence in
Education. 26, (2016), 205–223.

[3] Aleven, V. et al. 2006. Toward meta-cognitive tutoring:
A model of help seeking with a Cognitive Tutor.
International Journal of Artificial Intelligence in
Education. 16, 2 (2006), 101–128.

[4] Anderson, J.R. and Reiser, B.J. 1985. The LISP tutor.
Byte. 10, 4 (1985), 159–175.

[5] Becker, B.A. 2016. A New Metric to Quantify Repeated
Compiler Errors for Novice Programmers. Proceedings of
the 2016 ACM Conference on Innovation and Technology
in Computer Science Education (New York, NY, USA, Jul.
2016), 296–301.

[6] Becker, B.A. et al. 2019. Compiler Error Messages
Considered Unhelpful. Proceedings of the Working Group
Reports on Innovation and Technology in Computer
Science Education (New York, NY, USA, Dec. 2019), 177–
210.

[7] Conati, C. et al. 2013. Understanding attention to
adaptive hints in educational games: an eye-tracking
study. International Journal of Artificial Intelligence in
Education. 23, (2013), 136–161.

[8] Finnie-Ansley, J. et al. 2022. The Robots Are Coming:
Exploring the Implications of OpenAI Codex on
Introductory Programming. Proceedings of the 24th
Australasian Computing Education Conference (New
York, NY, USA, Feb. 2022), 10–19.

[9] Goldin, I. et al. 2013. Hints: you can’t have just one.
Educational Data Mining 2013 (2013).

[10] Jadud, M.C. 2006. Methods and tools for exploring
novice compilation behaviour. Proceedings of the second
international workshop on Computing education research
(New York, NY, USA, Sep. 2006), 73–84.

[11] Jadud, M.C. and Dorn, B. 2015. Aggregate Compilation
Behavior. Proceedings of the eleventh annual
International Conference on International Computing
Education Research (New York, NY, USA, Aug. 2015),
131–139.

[12] Karumbaiah, S. et al. 2022. How does Students’ Affect in
Virtual Learning Relate to Their Outcomes? A
Systematic Review Challenging the Positive-Negative
Dichotomy. Proceedings of the International Learning
Analytics and Knowledge Conference (2022), 24–33.

[13] Koedinger, K.R. and Corbett, A. 2005. Cognitive Tutors.
The Cambridge Handbook of the Learning Sciences. (Jun.
2005), 61–78.
DOI:https://doi.org/10.1017/CBO9780511816833.006.

[14] Lee, D.M.C. et al. 2011. Exploring the relationship
between novice programmer confusion and
achievement. Affective Computing and Intelligent
Interaction: 4th International Conference, ACII 2011,
Memphis, TN, USA (2011), 175–184.

[15] Liu, Z. et al. 2013. Sequences of Frustration and
Confusion, and Learning. Proceedings of the 6th
International Conference on Educational Data Mining
(2013), 114–120.

[16] Marwan, S. et al. 2019. An Evaluation of the Impact of
Automated Programming Hints on Performance and
Learning. Proceedings of the 2019 ACM Conference on
International Computing Education Research (New York,
NY, USA, Jul. 2019), 61–70.

[17] Mogessie, M. et al. 2020. Confrustion and gaming while
learning with erroneous examples in a decimals game.
Artificial Intelligence in Education: 21st International
Conference, AIED 2020 (2020), 208–213.

[18] Pankiewicz, M. and Baker, R.S. 2023. Large Language
Models (GPT) for automating feedback on programming
assignments. 31st International Conference on Computers
in Education Conference Proceedings, Volume I (2023),
68–77.

[19] Pankiewicz, M. and Bator, M. 2021. On-the-fly
Estimation of Task Difficulty for Item-based Adaptive
Online Learning Environments. Proceedings of the 26th
ACM Conference on Innovation and Technology in
Computer Science Education V. 1 (New York, NY, USA,
Jun. 2021), 317–323.

[20] Price, T.W. et al. 2017. iSnap: towards intelligent
tutoring in novice programming environments.
Proceedings of the 2017 ACM SIGCSE Technical
Symposium on computer science education (2017), 483–
488.

[21] Radford, A. et al. 2019. Language models are
unsupervised multitask learners. OpenAI blog. 1, 8
(2019), 9.

[22] Richey, J.E. et al. 2021. Gaming and Confrustion
Explains Learning Advantages for a Math Digital
Learning Game. Proceedings of the International
Conference on Artificial Intelligence and Education (2021).

[23] Roll, I. et al. 2011. Improving students’ help-seeking
skills using metacognitive feedback in an intelligent
tutoring system. Learning and instruction. 21, 2 (2011),
267–280.

[24] Traver, V.J. 2010. On compiler error messages: what
they say and what they mean. Adv. in Hum.-Comp. Int.
2010, (Jan. 2010).
DOI:https://doi.org/10.1155/2010/602570.

[25] VanLehn, K. 2011. The relative effectiveness of human
tutoring, intelligent tutoring systems, and other tutoring
systems. Educational psychologist. 46, 4 (2011), 197–221.

